Knowledge
  • My Knowledge Wiki
  • Courses
    • Courses
    • Coursera
      • Machine Learning
        • Week 1
          • Introduction
        • Week 2
          • Linear Regression with Multiple Variables
    • fast.ai
      • fast.ai
      • Deep Learning Part 1: Practical Deep Learning for Coders
        • Deep Learning Part 1: 2018 Edition (v2)
          • Lesson 1
        • Deep Learning Part 1: 2019 Edition (v3)
          • Lesson 1 - Image Recognition
          • Lesson 2 - Computer Vision: Deeper Applications
          • Lesson 3 - Multi-label, Segmentation, Image Regression, and More
          • Lesson 4 - NLP, Tabular, and Collaborative Filtering
          • Lesson 5 - Foundations of Neural Networks
          • Lesson 6 - Foundations of Convolutional Neural Networks
          • Lesson 7 - ResNets, U-Nets, GANs and RNNs
      • Deep Learning Part 2: Cutting Edge Deep Learning for Coders
        • Deep Learning Part 2: 2017 Edition (v1)
          • Lesson 8 - Artistic Style
          • Lesson 9 - Generative Models
          • Lesson 10 - Multi-modal & GANs
          • Lesson 11 - Memory Networks
          • Lesson 12 - Attentional Models
          • Lesson 13 - Neural Translation
          • Lesson 14 - Time Series & Segmentation
        • Deep Learning Part 2: 2018 Edition (v2)
          • Lesson 8 - Object Detection
          • Lesson 9 - Single Shot Multibox Detector (SSD)
          • Lesson 10 - Transfer Learning for NLP and NLP Classification
          • Lesson 11 - Neural Translation; Multi-modal Learning
          • Lesson 12 - DarkNet; Generative Adversarial Networks (GANs)
          • Lesson 13 - Image Enhancement; Style Transfer; Data Ethics
          • Lesson 14 - Super Resolution; Image Segmentation with U-Net
      • Machine Learning: Intro to Machine Learning for Coders
        • Machine Learning: 2017 Edition
          • Lesson 1 - Introduction to Random Forests
          • Lesson 2 - Random Forest Deep Dive
          • Lesson 3 - Feature Engineering
          • Lesson 4 - Random Forest Interpretation
          • Lesson 5 - Train vs Test
          • Lesson 6 - What is Machine Learning and Why Do We Use It
          • Lesson 7 - Decision Trees Ensemble
          • Lesson 8 - Basic Neural Networks
          • Lesson 9 - SGD; Neural Network Training; Broadcasting
          • Lesson 10 - Logistic Regression; NLP; Naive Bayes
          • Lesson 11 - Structured and Time-Series Data
          • Lesson 12 - Entity Embeddings; Data Science and Ethics
  • Books
    • Deep Work
  • Programming Languages
    • Programming Languages
      • JavaScript
        • JS Libraries
Powered by GitBook
On this page
  • Course Materials
  • Lessons Cover
  1. Courses
  2. fast.ai
  3. Machine Learning: Intro to Machine Learning for Coders

Machine Learning: 2017 Edition

PreviousMachine Learning: Intro to Machine Learning for CodersNextLesson 1 - Introduction to Random Forests

Last updated 6 years ago

Course Materials

  • This course is being taught by Jeremy Howard, and was developed by Jeremy along with Rachel Thomas. Jeremy used a top-down teaching method, which is different from how most math courses operate. If you took the fast.ai deep learning part 1 2018 edition course, that is what we used. The course used a specific library (fastai) built on top of PyTorch. The first part of the course focused on Decision Trees with Random Forests, the second part on Neural Networks for Deep Learning. The course goes at a somewhat gentler pace, but doesn't show how to build world-class models (the focus is more on process and interpretation, and also more in depth discussion of foundational details). The Deep Learning course is more intense, and gets you building state of the art models from lesson 1. Both can be understood on their own, but they both support each other.

Lessons Cover

  • Introduction to Random Forests

  • Random Forest Deep Dive

  • Feature Engineering

  • Random Forest Interpretation

  • Train vs Test

  • What is Machine Learning

  • Why Do We Use Machine Learning

  • Decision Trees Ensemble

  • Basic Neural Networks

  • SGD

  • Backpropagation

  • Neural Networkwork Training

  • Broadcasting

  • PyTorch

  • Logistic Regression

  • Natural Language Processing (NLP)

  • Naive Bayes

  • Structured and Time-Series Data

  • Entity Embeddings

  • Data Science and Ethics

Forum
Jupyter Notebook and Code